
AD-E401 855

TECHNICAL REPORT ARPAD-TR-88005

THE COMPLEXITY ANALYSIS TOOL

PAUL E. JANUSZ DICt
j

OCT 3 1 1988

1OCTOBER 1988
i "

,y7 ' ', U. S. ARMY NOW REACH, DEVELOPMENT AND I CENTER
I ,PRODUCT ASSURANCE DIRECTORATE
i ,,,.AFMAMT ,U Ao. PICATINNY ARSENAL, NEW JERSEY

I ', CW"Mr ICAL COMPJMAND

ARMAMEN' t 'CENTEF

I APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

I

!a 057Ii

The views, opinions, and/or findings cohtained in
this report are those of the author(s) and should
not be construed as -n official Department of the
Army position, policy, or decision, unless so
des'gna ted by other documentation.

Tne citation in this report of the names of
conmmercial firms or commercially availabie
products or services does not constitute offi'ial
endorsement by or approval of the U.S.
Government.

Destroy this report when no longer needed by any
method that will prevent disclosure of contents or
reconstruction of the document. Do rot return to
the originator.

__. |"

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Is. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2m. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATIONIDOWNGRADING SCHEDULE Approved for public release; distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER 5. MONITORING ORGANIZATION REPORT NUMBER
Technical Report ARPAD-TR-88005

60. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

ARDEC, PAD AMSMC-QAH-A(D) U.S. Army Materials and Technology Laboratory
Sc. ADDRESS (CITY, STATE, AND ZIP CODE) 7b. ADDRESS (CITY, STATE, AND ZIP CODE)

SOA/Math Branch SLCMT-MSI-QA, Mr. F. Stenton
Picatinny Arsenal, NJ 07806-5000 Watertown, MA 02172-0001

Be. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERORGANIZATION ARDEC, IMD
STINFO Br ISMCAR-IMI-I

Se. ADDRESS (CITY, STATE, AND ZIP CODE) 10. SOURCE O FUNDING NUMBERS
PROGRAM PROJECT NO. TASK NO. WORK UNIT

Picatinny Arsenal, NJ 07806-5000 ELEMENT NO. ACCESSION NO.
78011A DE51 3094

11. TITLE (INCLUDE SECURITY CLASSIFICATION)

THE COMPLEXITY ANALYSIS TOOL

12. PERSONAL AUTHOR(S)
Paul E. Janusz

13.. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (YEAR, MONTH, DAY) 15. PAGE COUNT
Final FROM I984 TO 1987. October 1988 26

16. SUPPLEMENTARY NOTATION
This project was accomplished as part of the U.S. Army's Manufacturing Methods and Technology Program. The primary
objective of this program is to develop, on a timely basis, manufacturing processes, techniques, and equipment for use in
production of Army material.
17. COSATI CODES I8. SUBJECT TERMS (CONTINUE ON REVERSE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)

FIELD IGROUP SGROUP Software complexity Structured testing Software verification & validation
Test paths Unit level testing Automated tool
MMT - Manufacturing methods and technologv

19. ABSTRACT (CONTINUE ON REVERSE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)
T; his report presents an overview of the complexity analysis tool (CAT), an automated tool which will analyze mission
critical computer resources (MCCR) software. CAT is based on the cyclomatic complexity metric, which is used to
measure, quantify, or evaluate a software module's complexity. Software which is less complex is easier to maintain
and is less likely to have embedded errors. The metric suggests the minimum number of paths which must be tested
in order to assure software reliability. The ideal limit of complexity is 10 for any software module. A module of
complexity greater than 10 would need to be modified or redesigned.

Applied during software development, the complexity measure limits the number of independent paths in a program
at the design and coding stages so that testing will be manageable during the later stages. This allows for structured
testing, avoiding the problems arising from software which is inherently untestable. This testing technique can be
applied during all stages of testing (i.e., unit, integration, and qualification testing). (cont)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

[] UNCLASSIFIEDUNLIMITED [] SAME AS RPT. j] DTIC USERS UNCLASSIFIED
22s. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (INCLUDE AREA CODE) 22c. OFFICE SYMBOL

I. HAZNEDARI (201) 724-3316 SMCAR-IMI-l

DD FORM 1473, 84 MAR UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

19. ABSTRACT: (cont)

CAT automates the metric for BASIC (HP-71), ATLAS (EQUATE), Ada (subset of
DOD-STD-1815A), Ada PDL, and PDL (Caine, Farber, Gordon). It operates on
both an IBM PC-AT (running MS DOS) and on DEC VAXs (750/780 running AT&T
UNIX 5.2). CAT analyzes source code and computes complexity on a module
basis. CAT also generates graphic representations of the logic flow paths and test
paths, as well as other textual output.

" m ,== =immmlm~ m 'lilemnnllllml i=j

CONTENTS

Page
Introduction 1

The Cyclomatic Complexity Metric 2

Complexity Analysis Tool 3

Benefits 4

Conclusions 6

References 11

Bibliography 13

Distribution List 15

FIGURES

1 Module directory 7

2 Module listing 7

3 Data flow diagram 8

4 Test path listing 9

5 Test path graph DTO10

COPY

t4SpECTEO

,Accession
For

DTIC TAB
Unarim-ounced I

tAva'ilit Codes

Dist Spe(..a1

INTRODUCTION

Approximately 85% of today's weapon systems employ embedded computers, and
there is a trend towards more complex systems. In these mission critical computer
resources (MCCR), a software error can have a drastic effect upon system
performance.

There are several problems facing MCCR development. First, there is the ever
increasing hardware dependency upon the software to successfully carry out its mis-
sion. At the same time, software development is a relatively new and unproven technol-
ogy compared to hardware. Software development is often performed in a sloppy
fashion and is improperly documented. Use of off-the-self software is often force fitted
to the application at hand. This approach to software design leads to errors, and if
detected late in the development cycle can drive up costs substantially.

The major problem with DoD software development projects today relates to the
verification and validation of requirements in the software program. Statistics have
shown that approximately 46% to 64% of software errors are traced back to inadequate
requirements and design. Of these errors, 70% of them are not caught early in the life
cycle and propagate into production and deployment (ref 1). The problem stems from
the fact that many software implementations of functional requirements remain un-
tested, and consequently errors are found during use when an untested path in the
software is executed. The surprises will cost the government both time and money
when extensive debugging and reverification efforts are required to fix these problems.
The cost of correcting these errors can be as much as 300 times the cost to correct it
during unit testing.

Software assessments for the most part are subjective in nature. The difference
between hardware and software quality assessments is the lack of measurable
parameters for software. For this reason there is an increasing drive to develop and
apply techniques which provide a quantitative means of measuring or assessing
software quality.

The primary means of performing software quality assessments is through inde-
pendent verification and validation (IV&V). This includes verifying that requirements are
met, through qualitative specification reviews, having adequate documentation, and
testing. Testing in support of software quality assurance (SQA) is very labor intensive.
In fact, the norm for software testing is about 50% of the total software development
effort (ref 1). In order to meet program deadlines and cost constraints, the testing effort
is often cut short, leaving doubt as to the quality of the software.

The problems mentioned above were addressed by the Software Quality
Assurance/Math Branch of the U.S. Army Armament Munition and Chemical Command
(AMCCOM). A technique was devised that would help verify the quality of the software
through the use of quantitative measures. The assessment technique in the form of an
automated tool would increase productivity and efficiency of available manpower,
reduce subjectivity, reduce fielded system failures, and consequently would reduce
development and maintenance costs. The result of this effort was the automation of the
cyclomatic complexity metric.

THE CYCLOMATIC COMPLEXITY METRIC

The cyclomatic complexity metric is documented in the U.S. Department of Com-
merce N-tional Bureau of Standards (NBS) Special Publication 500-99, "Software
Testing. A Software Testing Methodology Using the Cyclomatic Complexity Metric" (ref
2). It is based upon structured programming conventions and graph theory. The idea
behind the metric is to measure, quantify or evaluate the complexity of a software
module. Software which is less complex can be comprehended, is easier to maintain,
can be tested thoroughly, and is less likely to have embedded errors. The ideal limit of
complexity is 10 for any software module. A module of complexity greater than 10
would need to be broken down into smaller submodules.

The concept behind the metric is simple; one counts the number of control tokens
which exist in the software module to determine complexity. Complexity can be calcu-
lated as:

Complexity = The number of control tokens + 1

Control tokens are programming language statements which in some way provide
provision points which modify the top-down flow of the program. In other words, state-
ments such as IF-THEN-ELSE, CASE, GOTOs, are considered to be control tokens
since they base program flow upon a logical decision, thereby creating alternate paths
which program execution may follow. Thus, at the same time, the technique also
identifies the critical paths needed to exercise every line of code in the module. A
module of complexity five would have five critical or basis paths. These paths can then
be used to adequately test software modules while minimizing the extent of testing
required.

The metric can be used throughout the entire software life cycle. Applying a limited
complexity as a contractual requirement will force structured programming techniques.
Applied during software development, the metric will limit the number of basis paths in a

2

program at the design and coding stages. It can be used during software testing to
identify the basis paths and to minimize the testing effort. During the maintenance
phase, a proposed change should not be allowed to substantially drive up the com-
plexity, whereby increasing the testing effort.

The cyclomatic complexity metric allows you to quantitatively assess the software.
As discussed earlier, having this metric incorporated in the form of an automated tool
would have substantial benefits as well.

COMPLEXITY ANALYSIS TOOL

The complexity analysis tool (CAT) is an automated tool which is based upon the
cyclomatic complexity metric. It is designed to run on an IBM PC AT under a MS DOS
operating system, as well as on a DEC VAX under a UNIX (AT&T 5.2) operating sys-
tem. CAT will analyze an ASCII source code file and will identify the various control
tokens. It will then generate a graphic representation of the logic flow paths, called a
data flow diagram (DFD), similar to a flow chart. The basis paths can also be displayed.
CAT's interface consists of a series of user-friendly menus which guide the user through
execution of the tool.

The first thing CAT will ask for is the language being analyzed. CAT currently has
the ability to analyze programs written in BASIC (HP-71), PDL (Caine, Farber, Gordon),
Equate ATLAS, Ada (DOD-STD-1815A), and Ada PDL. After selecting an appropriate
file, the tool will pass the file through the appropriate language parser and perform the
metrics analysis. CAT operates under the assumption that the file can be compiled
successfully. If not, an appropriate error message will be raised. Upon successful
completion of the parser and metrics analysis, CAT is ready to display its output. The
user, through the use of menus, selects how the information is to be displayed (i.e., to
the screen printer, plotter, or disk file). Examples are shown in figures 1 through 5.

CAT's output consists of several tables and diagrams, including the source listing,
data flow diagram, and test paths. This output will provide the developer or assessor a
pictorial and quantitative representation of the software logic. The first output consists
of a source listing of the entire file. This listing contains two major sections. The first is
the module directory (fig. 1). It lists the modules found in this file and presents the vital
statistics for each of the modules. Modules are listed in the order they were found in the
source file, i.e., by ascending line number. The directory shows the name of each
module, the starting line, the number of lines in the module, and cyclomatic complexity.
At the far left of each line in the directory, a letter is given to the module. This letter is
used in the body of the listing to identify code belonging to the module.

3

The second section is the listing itself (fig. 2). The leftmost columns of each line are
used to show the correspondence between the source code and the DFD. First is the
line number, which is the count of lines from the top of the file. Next is the module letter
which identifies the module containing this line of code. Following the module letter is
the list of nodes that are represented, wholly or partially, by this line. Each module may
be examined individually if desired.

In looking at the DFID (fig. 3), there is a summary of information at the top of the
DFD. Listed are the source filename, the module within the source file being analyzed,

the module's complexity, the number of lines of code in that module, and the date and
time of the analysis. Also included is a color scheme for the DFD to indicate program
flow direction.

The numbers on the DFD represent nodes, a block of statements where the
program flow is sequential. Edges represent the program's branches taken between
blocks. Edges that cause loops are shown in one color. These edges always flow from
the bottom to the top of the page. Edges that perform a structured exit of a loop (such
as a WHILE or FOR statement) are shown in another color. These edges flow from the
top to the bottom of the page. All remaining edges are drawn in a third color. These
edges also go from the top to the bottom of the page. Another indication of the direction
and function of an edge is its shape. Loops or loop exits are always drawn as curved
lines. Other edges are drawn as straight lines unless they must be curved to avoid
colliding with another node.

If a file analyzed contained several modules, and one of these modules has a
complexity greater than 10, or one of these modules has been changed, these modules
would be candidates for further review. By going through the menu interface, a specific
module can be selected for individual review. The module's corresponding source
listing, DFD, and basis paths can be examined. CAT can automatically determine the
basis paths and display them in two fashions. The first is by a series of numbered
nodes, such as 0-1-2-3-5-6-7-14-7-8-9-10-13-3-4-16-17, corresponding to the DFD (fig.
4). The second means is by graphing the test paths individually (fig. 5).

BENEFITS

The significant benefits derived from a quality design are realized throughout the full
life-cycle of the program (i.e., development, production, post-deployment), as opposed
to benefits derived from an instantaneous assessment. CAT provides an overall im-
provement in design by enforcing structured programming techniques upon the
software programmer, thus designing quality into the software. Imposition of the metric
would also allow early inspection and diagnosis of the problem areas in the software
logic. For example, during initial design, CAT can be used to assure a low complexity in
the PDL. By using the PDL, DFDs, source listing and test paths, one can perform a

walk-through to check for logic or function errors before coding takes place. When
identified problems are resolved, proceed to the coding phase. The developed code
can then be passed through CAT again, coming up with another set of output. These
two sets of output, one from the PDL and one from the code, can then be compared
against one another. There should not be significant differences between the two. For
example, if a PDL module had a complexity of five, the code implementing that module
should not have a corresponding complexity of 25. The complexities are likely to
increase implementing the PDL into code, but they should not be significant differences.
If there are differences such as these, you know that the requirements in the PDL are
not correctly implemented into the code. This is another way errors could be uncovered
early in the life cycle before they propagate to unmanageable portions.

A major benefit derived from the use of the metric would be an improvement in the
ease and efficiency of testing. By concentrating on the basis paths, the testing effort is
prioritized and minimized. The test paths as a whole can be used for unit testing of the
module and can be part of its unit development folder. The tool can also be used in
conjunction with acceptance testing as a means of verifying the performance of the
software.

From a post deployment perspective, the metric is a means of obtaining a measure
of software supportability. Suppose you would like to know the effects of a proposed
change in the software. In looking at figure 2 you could locate the lines of source code
you intend to change. By looking at the corresponding node letters on the left-hand
side, you could then go to figure 3 and note its corresponding effect upon the other
nodes. If the area in question is highly structured, a change would probably have little
impact. However, if the area was highly unstructured, a change would probably have a
drastic impact. The diagrams could also be used in a reverse fashion. For example, if
you notice that a particular area of the DFD was cluttered and you wanted to clean it up,
you could note which nodes were involved. You could then go to figure 2 and find the
corresponding source code you would have to change.

CAT, because of its data flow analysis, not only detects a modification but relates
the modification to a particular flow area in the program. To fully characterize a
program change, CAT can flag changes in the program flow paths. Thus the complexity
metric will provide an efficient means of identifying regression test cases to verify those
portions of the software program which are changed.

CAT as an automated tool can eliminate manual computation errors, eliminate
subjectivity, and significantly reduce the number of manhours required for manual
computations of the metric. Preliminary forecasts estimate that the effort required to
apply the metric manually to a software development process is approximately 3% to
7% of the overall development effort (assuming no learning curve is required). This
estimate is based on our own in-house experience with MCCR software using manual
calculations of complexity. We project that with the automated tool the effort would drop

5

by about one or two orders of magnitude. In either case, taking the extra effort to use
the metric provides a vehicle for detecting and correcting bugs earlier in the life cycle.
This in turn could amount to significant benefits and savings in terms of development
and testing costs, productivity gains, and software quality and reliability.

CONCLUSIONS

The use of CAT as a quality assurance tool provides a quantitative measure of
software quality, structure, robustness, testability, and maintainability. Imposition of the
cyclomatic complexity metric on the developer during the early phases of the life cycle
will result in a quality design. Benefits will then be realized throughout the life cycle of
the program.

The complexity metric has been incorporated as a requirement in several mission
critical computer resources programs currently underway. A follow-on study will be
performed which will quantify these benefits in terms of time, labor, and cost savings, as
well as correlations between complexity and reliability, error rate, modifiability, etc. The
study will be performed using data gathered from users of the metric and tool. The
complexity analysis tool can be obtained by contacting:

U.S. Army AMCCOM
AMSMC-QAH-A(D)
Bldg 62
Picatinny Arsenal, NJ 07806-5000
(201) 724-4849, Autovon 880-4849

6

Complexity Analysis Tool
Listing from source file xsample.ada

Module Module Cyclomatic Starting Number
letter name complexity line of lines

A SAMPLEADA 6 6 19

Figure 1. Module directory

Page 1 CAT listing Source file:xsample.ada

Line Module/Node Source Text

Page 1 ('AT Li sting source file:X amiple.ada
ILine Module Node Source Text

I ok:procedure SAMPIE-A)A is
2 I, 1RSI: I VI(iLR
3 \lNTl I NI1XliR

5
6 AO beg i n

S AI i I I I R" ,VI (thle nA 1l I I ine(" V i r t e (I u a I t. i t! r "

A2 el e
I' \2 \IXI:= I I RSI:
1 A3 \h I e (%IAV -o)I oop
12 A A6 put Ilne)'" \ext not equal to /er,
I3 A7 J or I in 1 2() I oop

1 14 U: (1:
5 1 - put ("

1 A.8 A114 end loop:
17 A () case C is
1",1 A12 when 1 A l :
I9 I 1 Iihen 2 A I)11.1 ;.
2 Al\k) I hen otIe r, T RIT\ ()k :
21 A13 end case:
22 A4 A 13 end loop:
23 A.16 end if,
2-4 Al 7 end SAM\I'.Ii-)A:

Figure 2. Module listing

7

it . i i o | H , •.-

Upward flows

Loop exits
xsample.ada Plain Edges
SAMPLE-ADA Mon Sep 26 08:59
No. of Ada Lines 19
Complexity 6

-5

_6

27

S11 12

_16

17

Figure 3. Data flow diagram

8

Test Path .1sting
Modu I e Name: SAMPlI.EADA Fi le: xsample.ada
Complexity 6 I)ate/Time: Mon Sep 26 09:38
Language: Ada Page 1

Baseline: 0 1 15 16 17

Test Path 1: 0 1 2 3 4 16 17

Test Path 2: 0 1 2 3 5 6 7 8 9 10 13 3 4 16 17

Test Path 3: 0 1 2 3 5 6 7 14 7 8 9 10 13 3 4 16 17

Test Path 4: 0 1 2 3 5 6 7 8 9 12 13 3 4 16 17

Test Path 5: 0 1 2 3 5 6 7 8 9 11 13 3 4 16 17

Figure 4. Test path listing

9

xsample.ada -
SAMPLE-..ADA Uwr lwAdaopad lw

Compleity 6Loop exits
Compexiy 61 Plain Edges

Mon Sep 26 08:23

test path 4

71

Figure 5. Test path graph

10

REFERENCES

1. Sorkowitz, Alfred, Software Quality Assurance and Testing, presented at the Test-
ing Computer Software Conference, Washington, D.C., October 1984.

2. U.S. Department of Commerce, National Bureau of Standards, "Structured Testing:
A Software Testing Methodology Using the Cyclomatic Complexity Metric," NBS
Special Publication 500-99, December 1982.

11

BIBLIOGRAPHY

1. McCabe, T. J. (ed.), "Structured Testing," IEEE Computer Society Press, IEEE
Catalog No. EH0200-6, 1982.

2. Walsh, T. J., "A Software Reliability Study Using a Complexity Measure," Proceed-
ings of the 1979 National Computer Conference, AFIPS Press, 1979.

3. Janusz, Paul E. and Turoczy, William R., "Application of Software Test Tools to
Battlefield Automated Systems, Phase I," Technical Report ARPAD-TR-84003,
ARDEC, Dover, NJ, 1984.

13

II p •....

DISTRIBUTION LIST

Commander
Armament Research, Development and Engineering Center
U.S. Army Armament, Munitions and Chemical Command
ATTN: SMCAR-IMI-((5)
Picatinny Arsenal, NJ 07806-5000

Commander
U.S. Army Armament, Munitions and Chemical Command
ATTN: AMSMC-GCL(D)

AMSMC-PBM-TP(D), Tom McWilliams
AMSMC,FSC(D), Dan Nathan

Dave Johnson
AMSMC-FSD, William Ginley
AMSMC-QAA(D), G. DeMassi
AMSMC-QAH-A(D), Magid Athnasios

Michael Bucknor
David Castellano
Michael Cemek
Joseph Gombos
Mark Herbst
Paul Janusz
Wayne Lee
Patricia Lyon
Sharyn DcDowell
Aron Dutta
Geza Pap
Elizabeth Parliman
Richard Payne
Albert Stanbury
Allison Willis
Paul Willson

AMSMC-QAH-T(D), V. Minetti
G. Edick

AMSMC-QAR-I(D), M.H. Weinberg
AMSMC-SCM-P(D), J. Beetle

Picatinny Arsenal, NJ 07806-5000

15

Commander
Army Armament Research, Development and Engineering Center
ATTN: AMCPM-CAWS(D)

AMCPM-AL(D)
AMCPM-MCD(D)
AMCPM-TMA(D)
AMCPM-MO(D)
AMCPM-FZ(D)
AMCPM-HIP(D)

Picatinny Arsenal, NJ 07806-5000

Administrator
Defense Technical Information Center
ATTN: Accessions Division
Cameron Station
Alexandria, VA 22304-6145

Director
U.S. Army Materiel Systems Analysis Activity
ATTN: AMXSY-MP

AMXSY-R, William Clay
AMXSY-RM, John Woodworth

Aberdeen Proving Ground, MD 21005-5066

Commander
Chemical Research, Development and Engineering Center
U.S. Army Armament, Munitions and Chemical Command
ATTN: SMCCR-MSI
Aberdeen Proving Ground, MD 21010-5423

Commander
Chemical Research, Development and Engineering Center
U.S. Army Armament, Munitions and Chemical Commant
ATTN: SMCCR-RSP-A
Aberdeen Proving Ground, MD 21010-5423

Director
Ballistic Research Laboratory
ATTN: AMXBR-OD-ST
Aberdeen Proving Ground, MD 21005-5066

16

Chief
Benet Weapons Laboratory, CCAC
Armament Research, Development and Engineering Center
U.S. Army Armament, Munitions and Chemical Command
ATTN: SMCAR-CCB-TL
Watervliet, NY 12189-5000

Commander
U.S. Armament, Munitions and Chemical Command
ATTN: SMCAR-ESP-L
Rock Island, IL 61299-6000

Director
U.S. Army TRADOC Systems Analysis Activity
ATTN: ATAA-SL
White Sands Missile Range, NM 88002

Commander
U.S. Army Materiel Command
ATTN: AMCPD-IP, T. Shifflet

W.J. Jenkins
AMCPD-P, D. Griffin
AMCQA, S. Lorber

J. Stahl
AMCQA-E, Chris Neubert
AMCQA-EQ, E. Soliven
AMCQA-P, E. Lesser

5001 Eisenhower Avenue
Alexandria, VA 22333-0001

Commander
U.S. Army Armament, Munitions and Chemical Command
ATTN: AMSMC-QA(R), L. Griffin

AMSMC-QAK-B(R), R. Fer
Rock Island, IL 61299-6000

Director
U.S. Army Industrial Base Engineering Activity
ATTN: AMXIB-PA, D. Brim

AMXIB-PS, G. Fisher
L. Gross

Rock Island, IL 61299-7250

17

U.S. Army Belvoir R&D Center
ATTN: STRBE-V, B. Wells
Fort Belvoir, VA 22060-5606

Commander
U.S. Army Armament, Munitions and Chemical Command

ATTN: SMCPB-QAL, V. Warren
Pine Bluff Arsenal
Pine Bluff, AR 71602-9500

Commander
U.S. Army Aviation System Command
ATTN: AMSAV-QE, R. R. L'ltalian
Letterkenny Army Depot
Chambersburg, PA 17201-4170

Commander
U.S. Army Communications Electronics Command
ATTN: AMSEL-PA, A. D'Angelo

AMSEL-PA-MT-S, P. Kogut
Fort Monmouth, NJ 07703-5023

Commander
U.S. Army Laboratory Command
ATTN: AMSLC-AS, S. Alster

AMSLC-CT, R. Moore
2800 Powder Mill Road
Adelphi, MD 20783-1197

Commander
U.S. Army Missile Command
ATTN: AMSMI-Q, T. Howard III

AMSMI-QET, T. McVey
ASMI-RD-SE, L. Ross

L. Daniels
AMSMI-RKC, B. J. Alley
AMSMI-RKP, J. Wright

Redstone Arsenal, AL 35898-5720

18

Commander
U.S. Army Center for Night Vision and Electro-Optics
ATTN: AMSEL-PA-EN, V. Burger

A. Vuille
AMSEL-RD-NV-TS, R. Stefanik

Fort Belvoir, VA 22060-5606

Commander
U.S. Army Test and Evaluation Command
ATTN: AMSTE-TC-M, K. Balliet

J. Piro
R. G. Shelton

Aberdeen Proving Ground, MD 21005

Commander
U.S. Army Armament, Munitions and Chemical Command
ATTN: AMSMC-QAC-E(E), H. Elbaum

W. Maurits
Aberdeen Proving Ground, MD 21010-5423

Commander
Watervliet Arsenal
ATTN: SMCWV-PPI, W. Garber

SMCWV-QAE, S. Krupski
SMCWV-QA, J. Miller

Watervliet, NY 12189-5000

Commander
U.S. Army Natick R&D Center
ATTN: STRNC-R, R. Day
Kansas Street
Natick, MA 01760-5014

Commander
U.S. Army Tank-Automotive Command
ATTN: AMSTA-Q, L. Barnett

AMSTA-QAT, F. Braun
Robert Crow
D. Gamache

AMSTA-RCK, J. Chevalier
AMSTA-RCKM, D. Ostberg

Warren, MI 48397-5000

19

Commander
U.S. Army Troop Support and Aviation
Material Readiness Command
ATTN: AMSTS-Q, W. G. Creel
4300 Goodfellow Boulevard
St. Louis, MO 63120-5720

U.S. Army TROSCOM
ATTN: AMSTS-Q
St. Louis, MO 63120

U.S. Army TROSCOM-BRDEC
ATTN: STRBE-TQ, Lawrence Makowsky
Ft. Belvoir, VA 22060-5606

U.S. Army TECOM-WSMR
ATTN: STEWS-TE-OE, Marthe Wygant
White Sands, NM 88002-5070

U.S. Army ALMC
ATTN: AMXMC-ACM
Ft. Lee, VA 23801

U.S. Army DLA
ATTN: DLA-QES, Armond Darrin
Cameron Station
Alexandria, VA 22304-6100

U.S. Army DCASR
ATTN: DCASR-PHI-QTX, Ann Quinn
2800 S. 2oth St.
Philadelphia, PA 19101

U.S. Army DCASR-NY
ATTN: DCASR-QT, Mike Spezzaferro
201 Varick St.
New York, NY 10014

U.S. Army SE&L
ATTN: AMXMC-SEL-E, David Jenkins
Texarkana, TX 75507-5000

20

U.S. AMETA
ATTN: AMXOM-QA, Ray Loecke

Bruce Brocka
Rock Island, IL 61299-7040

USASDC
ATTN: DASD-H-TP, Emmett Magathan

Patrick Duggan
P.O. Box 1500
Huntsville, AL 35807-3801

USA SIGCEN
Maj Mourfield
Chief ACSD
ATTN: ATZH-CDC
Ft. Gordon, GA 30905

Director
Materials Technology Laboratory
ATTN: SLCMT-D

SLCMT-DD
SLCMT-MS
SLCMT-OM
SLCMT-MC
SLCMT-TP
SLCMT-MSI
SLCMT-MSI-NE
SLCMT-OMP
SLCMT-MCM-SB

Watertown, MA 02172-0001

Commander
U.S. Army Dugway Proving Ground
ATTN: STEDP-MT-AT, K. Dumbauld

STEDP-MT-C-T, F. Bagley
STEDP-PO, J. McKenzie

Dugway, UT 84002-5000

Commander
Harry Diamond Laboratories
ATTN: SLCHD-PO-P, J. Hoke
2800 Powder Mill Road
Adelphi, MD 20783-1191

21

mm nl m m dmm Mm Iam m nnu In n m m ;, U

Commander
U.S. Army Electronic Technology and Devices Laboratory
ATTN: SLCET-R, J. Key
Fort Monmouth, NJ 07703-5302

Commander
U.S. Army Yuma Proving Ground
ATTN: STEYP-MTD, W. E. Brooks
Yuma, AZ 85365

Commander
U.S. Army White Sands Missile Range
ATTN: STEWS-OA, C. Treat
White Sands Missile Range, NM 88002

Commander
U.S. Army Tropic Test Center
ATTN: STETC-LD-M
APO
Miami, FL 34004

Commander
Anniston Army Depot
ATTN: SDSAN-DQA, Mr. Pennington
Anniston, AL 36201

Commander
U.S. Army Depot System Command
ATTN: AMSDS-QM, B. Newman
Chambersburg, PA 17201-4170

Commander
U.S. Army Pine Bluff Arsenal
ATTN: AMCPB-QA, H. Love
Pine Bluff, AR 71611

Commander
Corpus Christi Army Depot
ATTN SDSCC-Q, D. L. Ross
Corpus Christi, TX 78419

22

Commander
U.S. Army Jefferson Proving Ground
ATTN: STEJP-TD, MAJ A. Alqhin
Madison, IN 47250

Commander
Letterkenny Army Depot
ATTN: SDSLE-Q, G. Mantooth
Chambersburg, PA 17201-4150

Commander
New Cumberland Army Depot
ATTN: SDSNC-Q, A. T. Holderbach
New Cumberland, PA 17070

Commander
Red River Army Depot
ATTN: SDSRR-Q, W. D. Wuertz
Texarkana, TX 75501

Commander
U.S. Army Electronic Proving Ground
ATTN: STEEP-MT, LTC J.R. Sutherland, Jr.
Fort Huachuca, AZ 85613

CommanderLexington-Blue Grass Army Depot
ATTN: SDSLB-QA, J. Palmer, Jr.
Lexington, KY 40511-5100

Commander
Sacramento Army Depot
ATTN: SDSSA-Q, R. Bragg
Sacramento, CA 95813-5027

Commander
Savanna Army Depot Activity
ATTN: SDSLE-VS
Savanna, IL 61074-9636

Commander
Seneca Army Depot
ATTN: SDSSE-R, P.W. Chavez
Romulus, NY 14541

23

Commander
Sharpe Army Depot
ATTN: SDSSH-Q, J. E. Seyfried
Lathrop, CA 95331

Commander
Sierra Army Depot
ATTN: SDSSI-QA, V. Steed
Herlong, CA 96113

Commander
Tooele Army Depot
ATTN: SDSTE-QA, R.M. Rich
Tooele, UT 84074-5010

Commander
Pueblo Depot Activity
ATTN: SDSTE-PUQ, J. Farley
Pueblo, CO 81001

Commander
Tobyhanna Army Depot
ATTN: SDSTO-Q, W.J. Lord
Tobyhanna, PA 18466

Sandia National Laboratories
ATTN: SQAE, Dan Patrick
Quality Assurance Division 7252
Albequerque, NM 87185

U.S. Army AMCCOM
ATTN: AMSMC-QAV-A, Bill Thetford
Edggewood, MD 21010-5423

U.S. Army AVSCOM
ATTN: AMSAV-O, Henry Fong

AMSAV-QP, Mark Vail
St. Louis, MO 63120

U.S. Army CECOM
ATTN: AMSEL-PA-DL, Brian Casey

AMSEL-PA-MT-S, Joel Heidelberg
Ft. Monmouth, NJ 07703-5023

24

U.S. Army DIESCOM
ATTN: AMSDS-Q-E-T, Douglas Hanna
Chambersburg, PA 17201

U.S. Army LABCOM
ATTN: AMSLC-EN-PA, John Goon
Adeiphi, MD 20783

25

